Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation.
نویسندگان
چکیده
It is now accepted that the physical forces in ultrasonic cleaning are due to strongly pulsating bubbles driven by the sound field. Here we have a detailed look at bubble induced cleaning flow by analyzing the transport of an individual particle near an expanding and collapsing bubble. The induced particulate transport is compared with a force balance model. We find two important properties of the flow which explain why bubbles are effectively cleaning: During bubble expansion a strong shear layer loosens the particle from the surface through particle spinning and secondly an unsteady boundary layer generates an attractive force, thus collecting the contamination in the bubble's close proximity.
منابع مشابه
Dynamic Self-Assembly of Spinning Particles
This paper presents a numerical study of the dynamic self-assembly of neutrally buoyant particles rotating in a plane in a viscous fluid. The particles experience simultaneously a magnetic torque that drives their individual spinning motion, a magnetic attraction toward the center of the domain, and flow-induced interactions. A hydrodynamic repulsion balances the centripetal attraction of the m...
متن کاملColloidal Systems with both a Short-Range Attraction and a Long-Range Repulsion
Even though the Derjaguin-Landau-Verwey-Overbeek theory has been used to describe the interactions between charged colloidal particles for over half a century, research on systems with a weak short-range attraction and long-range repulsion (SALR) has begun receiving the intensive attention from the colloidal community only very recently. Systems with a SALR interaction include micrometer sized ...
متن کاملMixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...
متن کاملEffect of electric-field-induced capillary attraction on the motion of particles at an oil-water interface.
Here, we investigate experimentally and theoretically the motion of spherical glass particles of radii 240-310 microm attached to a tetradecane-water interface. Pairs of particles, which are moving toward each other under the action of lateral capillary force, are observed by optical microscopy. The purpose is to check whether the particle electric charges influence the particle motion, and whe...
متن کاملA Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 107 7 شماره
صفحات -
تاریخ انتشار 2011